DOING THINGS WITH DERIVATIVES

Math 130 - Essentials of Calculus

10 March 2021

Math 130 - Essentials of Calculus

Doing Things With Derivatives

-10 March 2021 1/8

∃ ► 4

Now You Try It!

EXAMPLE

A manufacturer of power supplies estimates that it will incur a total cost of $C(q) = 2500 + 4q + 0.005q^2$ when producing q power supplies, and it will collect $R(q) = 16q - 0.002q^2$ dollars in revenue.

- Write a function for the profit P the manufacturer can expect after producing q power supplies.
- 2 Find the marginal cost and marginal revenue functions.
- Output: Book of the second second

医下子 医下

DEMAND CURVES

There is normally a relationship between the price of a product or service and the number of units that can be sold. Let p = D(q) be the price per unit that a company can charge if it sells q units. This function D is called the **demand function** (also called a *price function*) and its graph is called the **demand curve**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Demand Curves

There is normally a relationship between the price of a product or service and the number of units that can be sold. Let p = D(q) be the price per unit that a company can charge if it sells q units. This function D is called the **demand function** (also called a *price function*) and its graph is called the **demand curve**. We expect p to be a decreasing function of q since, in order to sell more units, a lower price would be required.

DEMAND CURVES

There is normally a relationship between the price of a product or service and the number of units that can be sold. Let p = D(q) be the price per unit that a company can charge if it sells q units. This function D is called the **demand function** (also called a *price function*) and its graph is called the **demand curve**. We expect p to be a decreasing function of q since, in order to sell more units, a lower price would be required. Here's a typical shape of a demand curve p = D(q).

DEMAND CURVES

There is normally a relationship between the price of a product or service and the number of units that can be sold. Let p = D(q) be the price per unit that a company can charge if it sells q units. This function D is called the **demand function** (also called a price function) and its graph is called the **demand curve**. We expect p to be a decreasing function of q since, in order to sell more units, a lower price would be required. Here's a typical shape of a demand curve p = D(q).

> Because revenue is the number of units sold times the price per unit, the revenue can be found as $R(q) = q \cdot D(q).$ 10 March 2021 3/8

MAXIMIZING PROFIT

EXAMPLE

A company has cost and demand functions

$$C(q) = 84 + 1.26q - 0.01q^2 + 0.00007q^3$$
 and $D(q) = 3.5 - 0.01q$.

If the price of each unit is \$1.20, how many units will be sold?

Math 130 - Essentials of Calculus

Doing Things With Derivatives

10 March 2021 4/8

The second second

MAXIMIZING PROFIT

EXAMPLE

A company has cost and demand functions

$$C(q) = 84 + 1.26q - 0.01q^2 + 0.00007q^3$$
 and $D(q) = 3.5 - 0.01q$.

If the price of each unit is \$1.20, how many units will be sold?

Oetermine the production level that will maximize profit for the company.

Now You Try It!

EXAMPLE

A company has cost and demand functions

$$C(q) = 680 + 4q + 0.01q^2$$
 and $p = 12 - rac{q}{500}$.

Find the production level that will maximize profit.

Math 130 - Essentials of Calculus

Doing Things With Derivatives

10 March 2021 5/8

The Quotient Rule

The product rule tells us how to differentiate a product of two functions, but it actually has to be combined with another rule to tell us how to differentiate a quotient.

The Quotient Rule

The product rule tells us how to differentiate a product of two functions, but it actually has to be combined with another rule to tell us how to differentiate a quotient. We'll jump directly to the answer:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The Quotient Rule

The product rule tells us how to differentiate a product of two functions, but it actually has to be combined with another rule to tell us how to differentiate a quotient. We'll jump directly to the answer:

THEOREM (THE QUOTIENT RULE)

If f and g are differentiable, then

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.$$

Math 130 - Essentials of Calculus

Doing Things With Derivatives

10 March 2021 6/8

EXAMPLE

Differentiate the given function:

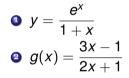
 $y = \frac{e^x}{1+x}$

Math 130 - Essentials of Calculus

Doing Things With Derivatives

EXAMPLE

Differentiate the given function:

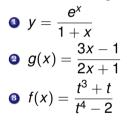


Math 130 - Essentials of Calculus

Doing Things With Derivatives

EXAMPLE

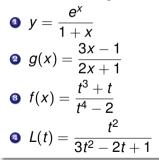
Differentiate the given function:



э

EXAMPLE

Differentiate the given function:



э

EXAMPLE

Compute the second derivative of the following functions:

•
$$f(x) = (x - 1)e^{x}$$

Math 130 - Essentials of Calculus

Doing Things With Derivatives

10 March 2021 8/8

★ ∃ > ★

EXAMPLE

Compute the second derivative of the following functions:

•
$$f(x) = (x - 1)e^{x}$$

• $f(x) = \frac{x}{x^{2} + 1}$

Math 130 - Essentials of Calculus

Doing Things With Derivatives

10 March 2021 8/8

A B > A B

EXAMPLE

Compute the second derivative of the following functions:

•
$$f(x) = (x - 1)e^{x}$$

• $f(x) = \frac{x}{x^2 + 1}$

EXAMPLE

Suppose that
$$f(5) = 1$$
, $f'(5) = 6$, $g(5) = -3$, and $g'(5) = 2$. If $B(x) = \frac{f(x)}{g(x)}$, find $B'(5)$.

Math 130 - Essentials of Calculus

Doing Things With Derivatives

10 March 2021 8/8

A B > A B

EXAMPLE

Compute the second derivative of the following functions:

•
$$f(x) = (x - 1)e^{x}$$

• $f(x) = \frac{x}{x^2 + 1}$

EXAMPLE

Suppose that
$$f(5) = 1$$
, $f'(5) = 6$, $g(5) = -3$, and $g'(5) = 2$. If $B(x) = \frac{f(x)}{g(x)}$, find $B'(5)$.

EXAMPLE

Suppose that
$$f(5) = 1$$
, $f'(5) = 6$, $g(5) = -3$, and $g'(5) = 2$. If $C(x) = \frac{g(x)}{f(x)}$, find $C'(5)$.

Doing Things With Derivatives